Uniformizarea miscarii arborelui cotit
Momentul instantaneu al unui motor policilindric se dtermina prin insumarea momentelor dezvoltate de cilindrii pe fiecare fus maneton. La motoarele cu cilindri in V pe un maneton actioneaza bielele a doi cilindri.
Momentul motor total este variabil pe parcursul unui ciclu motor si de aceea si viteza unghiulara a arborelui cotit este variabila. Acest lucru ar produce perturbatii foarte importante la utilizarea pentru echiparea autovehiculelor rutiere.
Se defineste gradul de neuniformitate a miscarii arborelui cotit:
unde: - ωmax [rad/s] - viteza unghiulara maxima
- ωmin [rad/s] - viteza unghiulara minima
-
[rad/s] - viteza
unghiulara medie
=(ωmax-ωmin)/2 [rad/s]
Exista doua moduri de reducere a gradului de neuniformitate a miscarii arborelui cotit:
- cresterea numarului de cilindri - este limitata de o serie de factori
- marirea momentului de inertie mecanic al arborelui cotit prin montarea unui volant la capatul dinspre utilizator;
Daca se considera variatia momentului total al motorului pe parcursul unui ciclu MiΣ (fig. 2.19).
fig 2.19
Se
determina momentul mediu al motorului
prin planimetrarea
diagramei de variatie a momentului motor instantaneu functie de
unghiul de rotatie aarborelui cotit.
Excesul de
lucru mecanic elementar fata de lucrul mecanic mediu preluat de
utilizator
este egal, prin
definitie cu:
[J]
Acest exces
de lucru mecanic este reprezentat in figura 2.19 de suma ariilor hasurate,
situate deasupra segmentului care reprezinta momentul mediu
.
Suma ariilor hasurate A'L se determina in [mm2] prin planimetrare.
Valoarea excesului de lucru mecanic se determina din relatia:
AL=(p/180).kM.kα.A'L [J]
unde: - kM [Nm/mm] - scara aleasa a momentelor
- kα [grd/mm] - scara aleasa a unghiurilor
Excesul de lucru mecanic se poate determina si cu relatia:
[J] (2.13)
si luand in considerare relatiile (2.11) si (2.12) rezulta:
AL=Jt.δω.ω2 [J] (2.14)
de unde rezulta expresia pentru determinarea momentului de inertie mecanic total al arborelui cotit:
[kg.m2] (2.15)
Pentru gradul de neuniformitate a miscarii arborelui cotit se accepta valorile δω=1/80 1/40
ω=p.n/30 [rad/s] - viteza unghiulara de rotatie a arborelui cotit la turatia de putere
Momentul mecanic de inertie al volantului este o fractiune din cel total al arborelui cotit:
Jv=(0,8 0,9).Jt [kg.m2]
Calcule:
![]()
![]()
+![]()
+![]()
-![]()
![]()
![]()
![]()
-momentul mediu efectiv total.
![]()
![]()
![]()
![]()
![]()
A'=170+470+700+1890+470=3700 [
]
A'=3700 [
]
![]()
![]()
![]()
![]()
-momentul total de inertie al arborelui cotit.
-gradul de uniformitate al arborelui cotit.
![]()
![]()
Se alege ![]()

![]()
![]()
![]()
|
Politica de confidentialitate |
| Copyright ©
2025 - Toate drepturile rezervate. Toate documentele au caracter informativ cu scop educational. |
Personaje din literatura |
| Baltagul – caracterizarea personajelor |
| Caracterizare Alexandru Lapusneanul |
| Caracterizarea lui Gavilescu |
| Caracterizarea personajelor negative din basmul |
Tehnica si mecanica |
| Cuplaje - definitii. notatii. exemple. repere istorice. |
| Actionare macara |
| Reprezentarea si cotarea filetelor |
Geografie |
| Turismul pe terra |
| Vulcanii Și mediul |
| Padurile pe terra si industrializarea lemnului |
| Termeni si conditii |
| Contact |
| Creeaza si tu |